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Collaborative robots (in short: cobots) have the potential to assist workers with
physically or cognitive demanding tasks. However, it is crucial to recognize that
such assistance can have both positive and negative effects on job quality. A key
aspect of human-robot collaboration is the interdependence between human
and robotic tasks. This interdependence influences the autonomyof the operator
and can impact the work pace, potentially leading to a situation where the
human's work pace becomes reliant on that of the robot. Given that autonomy
and work pace are essential determinants of job quality, design decisions
concerning these factors can greatly influence the overall success of a robot
implementation. The impact of autonomy and work pace was systematically
examined through an experimental study conducted in an industrial assembly
task. 20 participants engaged in collaborative work with a robot under three
conditions: human lead (HL), fast-paced robot lead (FRL), and slow-paced robot
lead (SRL). Perceived workload was used as a proxy for job quality. To assess
the perceived workload associated with each condition was assessed with the
NASA Task Load Index (TLX). Specifically, the study aimed to evaluate the role of
human autonomy by comparing the perceived workload between HL and FRL
conditions, as well as the influence of robot pace by comparing SRL and FRL
conditions. The findings revealed a significant correlation between a higher level
of human autonomy and a lower perceived workload. Furthermore, a decrease
in robot pace was observed to result in a reduction of two specific factors
measuring perceived workload, namely cognitive and temporal demand. These
results suggest that interventions aimed at increasing human autonomy and
appropriately adjusting the robot's work pace can serve as effective measures
for optimizing the perceived workload in collaborative scenarios.

KEYWORDS

cobot, perceived workload, industrial assembly work, autonomy, work pace, job quality

1 Introduction

The fourth industrial revolution, conceptualized in Industry 4.0, has led to the
introduction of various new technologies that digitize, connect, and automate procedures.
Despite this ever-increasing level of automation, human involvement is still crucial due to
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their adaptability, dexterity, and cognitive abilities. To make optimal
use of the strengths of humans within a highly automated
environment new solutions are needed. The development of the
collaborative robot or cobot, allowed humans and robots to
work closely together as a flexible and efficient team (Lenz et al.,
2008). A key characteristic of human-robot collaboration is
the interdependency between human and robot actions (Hoc,
2000).

The benefit of human-robot collaboration (HRC) is the
possibility to make optimal use of human and robot strengths
and mitigate weaknesses. HRC can improve efficiency through
concurrent motion of robots and humans (Lasota and Shah, 2015).
The potential benefit for humans in HRC is that it can reduce
physical and cognitive workload (Singh et al., 2013; Cherubini et al.,
2016). On the other hand, working in collaboration with a robot
can also have negative effects for humans. To facilitate human
robot collaboration, more focus on the human is needed, instead
of automation alone (Kolbeinsson, Lagerstedt, and Lindblom,
2019).

To measure and access the quality of jobs the OECD developed
the framework for job quality (Cazes, Hijzen, and Saint-Martin,
2015). Within this framework, the quality of the working
environment is the dimension that deals with the non-economic
aspects of the work. A good working environment balances job
demands and job resources. This balance originated from the job-
demand-control model (Karasek, 1979). According to this model
operator wellbeing depends on the balance between the level of
job demands, and the level of control the operator has to cope
with these demands. The introduction of robots in the workplace
alters both demands and control. The demands change when tasks
are reallocated between the human and the robot, or the robot
changes the working pace. The level of control changes when the
robot takes over decision making tasks from the human. In the
design of HRC applications, numerous task distributions and robot
work paces can be considered, offering an opportunity to optimize
the HRC implementation and enhance working conditions. In this
research, we focus on the robot work pace and the human autonomy,
i.e., the level of control an operator has to select and initiate
actions.

Human autonomy in HRC is conceptualized in the levels of
automation that describe ten levels between fully manual and fully
automated behavior (Parasuraman, Sheridan, and Wickens, 2000).
According to this study, an automation level should be chosen
that optimizes performance. A metastudy Onnasch et al. (2014)
shows a preference to increase automaton until a tipping point
is reached where the unwanted effects from mistakes overtake.
HRC studies by Gombolay et al. (2015) and Schulz et al. (2017) have
shown that humans prefer working with a robot with a relative
high level of automation. This seems to suggest that operators are
willing to sacrifice autonomy if there is a considerable advantage
in demand. The opposite has been argued by Weiss et al. (2011)
who stated that operators might perceive a negative change in
their working conditions when part of the control and task load is
taken over by the robot. In line with this Pollak et al. (2020) found
that manual control over the robot improved the wellbeing of the
operator.

The effect of pace and synchronization of human and robot
actions has been captured in the concept of fluency for which a set

of subjective and objective metrics is available.The objective metrics
include the relative portion of functional and non-functional
delays of the human and robot, and the amount of parallel work
(Hoffman, 2019). Fluency is generally improved by minimizing
delays, especially for the worker. This promotes a fast-paced robot
that finishes tasks early in anticipation of human tasks. However,
two studies revealed that a high moving speed of the robot leads
to high cognitive workload, significantly increasing fear, surprise
and discomfort (Arai, Kato, and Fujita, 2010; Fujita, Kato, and
Tamio, 2010). These results might also be explained in part by
the fact that faster moving robots increased the sense of time
pressure.

The aforementioned studies seem tomake conflicting statements
about the role of human autonomy and time pressure. There
are several explanations for this. First, the change in human
autonomy or work pace is paired with other factors that have
influenced the outcomes. For example, time pressure and robot
speed might be influenced at the same time (Arai, Kato, and
Fujita, 2010; Fujita, Kato, and Tamio, 2010), or the change in
autonomy also entails a change in the task load (Fournier et al.,
2022). Second, many studies are intended as a proof of concept
and only involve a small (<10) number of subjects (Baltrusch et al.,
2021).

To properly study the effects of time-pressure and autonomy,
the conditions should be kept uniform in terms of task load. Such
a standardization might also benefit industrial applications. Many
industrial processes, such as assembly work, are characterized by
repetitive tasks that must be completed in a prescribed cycle time
(Cohen et al., 2022). This cycle time is linked to the task at hand
and also to other tasks in the process and customer demand. HRC
solutions that improve workload at the expense of cycle time are
likely to be rejected in practice.

This study aims to identify the effect of human autonomy and
robot work pace in the context of industrial assembly work. The
following research questions are formulated:

1. What is the impact of increasing human autonomy on the
perceived workload of industrial operators?

2. What is the impact of slower robot pacing on the perceived
workload of industrial operators?

We have set up an experiment to answer the stated research
questions. In the experiment, participants worked together with
a robot on a manual assembly task. The task simulates a typical
industrial assembly task. During the experiment the level of human
autonomy and the robot work pace of the robot could be controlled
such that multiple conditions were created that provided the data to
answer the research questions.

2 Methods

2.1 Participants

In this study 20 participants were included (15 men and
5 women, 39 std 14 years old). Participants were recruited via
flyers and personal contacts at the BIC Manufacturing Campus,
Eindhoven, Netherlands and from the research groups at TNO
and HIVA KU Leuven. As such, a diverse group of participants
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FIGURE 1
Experimental set-up of the manual assembly task.

was found, 4 participants had secondary education or an associate
degree, 4 had a bachelor's degree, and 12 had a master's degree or
higher. 6 participants were students, 14 had a job. This research
complied with the tenets of the Declaration of Helsinki and was
approved by the Institutional Review Board at TNO, Leiden,
Netherlands (application 2020-063). Informed consentwas obtained
from each participant.

2.2 Experimental set-up

The participant and the robot performed collaborative manual
assembly tasks in a shared workspace (Figure 1).

The collaborative task comprised placing pink and brown tiles
on a board. Each board had two rows with six slots and ten of these
boards were made per condition. The human and the robot each
filled a different row with tiles (Figure 2). The participant and the
robot were instructed to place the tiles such that opposing tiles had
the same color. Each participant collaborated with the robot in three
different conditions. For each condition the way the tiles had to be
placed on the board was different: human in the lead (HL), slow-
paced robot in the lead (SRL), fast-paced robot in the lead (FRL).
The actor that was in the lead, determined the placement order of
the tiles and triggering the actions of the other actor (human or
robot). The HL versus the FRL condition tests the effect of human
autonomy (high versus low human autonomy). The SRL versus the
FRL condition tests the effect of robot work pace. The robot work
pace was changed by altering the onset of the robot movement. The
robot speed was constant across conditions.The different conditions
are visualized in Figure 3. A video of the conditions is available as
Supplementary Material.

2.2.1 Human in the lead (HL)
The participants initiated the task, by selecting a tile from their

supply and placing it in one of the slots on the board (Figure 2A).
In this condition the slots were marked pink or brown and the

participant was instructed to place tiles in the slots with matching
colors. Each board had a different color pattern to prevent that
a participant learned a sequence. The participant could select its
own placement pattern, i.e., the order in which the slots were filled.
When the participant placed a tile, the robot picked a tile of the
same color and placed it in the matching slot on the opposite side
of the board. The human did not have to wait for the robot to
continue to the next tile, so the participant and the robot worked in
parallel.

2.2.2 Slow-paced robot in the lead (SRL)
Therobot initiated the task, by selecting a tile from its supply and

placing this tile in one of the slots on the board (Figure 2B). Then
participants had to pick a tile of the same color and placed it in the
opposing slot on the board. The robot waited until the participant
had placed a tile before placing its next tile. The participant and the
robot worked serially on the task. The robot had a limited set of
predefined placement patterns, to prevent that a participant learned
a sequence.

2.2.3 Fast-paced robot in the lead (FRL)
This condition was the same as the SRL condition with one

exception. In the FRL condition the robot was allowed to work
one tile ahead of the human so the participant and the robot
worked in parallel without waiting times between human and robot
tasks.

2.2.4 Cognitive task
To assure, for each condition, that the task time of the robot

was shorter than the task time of the human, the participants had to
perform a small cognitive task before placing the tile.Theparticipant
had to count the number of “T”-signs in an arrangement of “T” and
“+”-signs on the back of each tile (Figure 4). Each tile had between
2 and 8 “T”-signs on the back.

The front side listed multiple possible answers (2-8). The
participant had to place the tile with the correct answer on top the
board. To assure that the participant placed all the tiles correctly.
The tiles had an unnoticeable small asymmetry, such that the tiles
only fitted in the slots when the correct answer was on top. When
the participant noticed the tile did not fit, the participant had to
correct the counting error before proceeding with the next tile.
This approach effectively mitigated the possibility of errors at task
completion.

2.2.5 Robotic setup
The robotic setup consisted out of a dual armed YuMi cobot

(IRB 14000, ABB, Zürich, Switzerland) and an auxiliary camera
(Logitech C920 HD Pro Webcam). The board and robot-tiles
supply had fixed positions and the robot was programmed to place
tiles from its tile supply to the board using its build in suction
cups. The position and color of the tiles that were placed on the
board by the participant were detected by the camera that tracked
the square AR markers that were put on the tiles and board.
The detection of a new placement triggered the robot actions.
The synchronization of tasks performed with custom scheduling
software (Pupa, Van Dijk, and Secchi, 2021). The robot motions
were programmed in ABB RAPID software. The markers detection

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1244656
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


van Dijk et al. 10.3389/frobt.2023.1244656

FIGURE 2
Tile boards for the collaborative tasks. (A): tile board for the HL condition without tiles. Note that for the HL conditions the dots in the middle in the
bottom rows indicate the color of the tile that needs to be placed. (B): tile board for the FRL and SRL conditions with 3 robot tiles and 2 human tiles.

FIGURE 3
Timeline of the three conditions (HL, FRL, SRL). Task times are indicative for flawless task execution without delays or mistakes. The board cycle time,
the time to finish one board, is fixed to 90 s. Arrows denote a dependency between an ending and a starting task. Note that when a human task is
dependent on a robot task, the human can start as soon as the robot has selected a tile, and the human does not have to wait until the robot has
completed the task.

was programmed in ROS (kinetic) using the ar_track_alvar
package.

2.3 Experimental procedure

Before the start of the measurement participants were requested
to fill in a questionnaire on personal characteristics, gender, age,
highest completed level of education and type of employment. After
a short explanation of the experimental set-up, each participant
started with a try-out where each condition was tested for a brief
period. During this try-out the participants could get familiarized

with the robot and the task. Subsequently, the participant performed
the manual assembly task in the three different collaboration
conditions (Figure 2). Each condition consisted of the assembly of
ten boards in a row. The assembly of a board consisted of placing
the tiles, removing the tiles placed by the robot, putting away the
current board, and placing a new board on the table. The board
cycle time, i.e., the time a participant had to finish one board, was
fixed at 90 s. The board cycle time was established during a pilot and
allowed the subjects to work at a comfortable pace. If the participant
finished early, the participant waited until the 90 s were passed. If
the participant was not ready in the allotted time the participant
was allowed to finish the task before starting the next cycle. After
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FIGURE 4
Back and front view of a tile that was placed by the human. The
correct answer (2) is on top.

each condition with ten boards, participants filled a questionnaire
for assessing perceived workload and perceived performance. The
sequence of conditions was systematically varied to prevent order
effects.

2.4 Measurements

2.4.1 Perceived workload
The NASA Task Load Index (TLX) (Hart and Staveland,

1988) was used to score the perceived workload on 6 scales:
cognitive demand, physical demand, temporal demand, effort,
frustration and perceived performance. A copy of the questionnaire
in Dutch and English is available as Supplementary Material. Since
objective performance was fixed through the board cycle time
across conditions, the perceived performance score will serve an
indicator of whether subjects perceived their performance as similar
across conditions. The other factors are indicators for the change in
perceived workload.

2.4.2 Objective task performance
The board cycle time was kept constant (see Section

Experimental set-up), while the tile cycle time had the potential
to vary. To ensure that large variations in tile cycle time were not
present across conditions, the tile cycle time was recoded. The tile
cycle time was recorded as the time between placing two tiles by the
participant. Any waiting time for the participant due to the robot
was included in the cycle time. For each participant and condition
the median cycle time was calculated. The placement of the first
tile was discarded because it often had some irregularities in the
recording and in the HL condition involved a vocal “go” from the
experiment conductor which did not exactly line up with the start
of the recording.

2.4.3 Statistics
To test for statistical differences in collaboration conditions, the

scale values of the TLX were compared between the conditions,
using the non-parametric Wilcoxon test. The results will report
the comparison between HL vs. FRL and SRL vs. FRL that relate
to respectively research questions one and two. p-values below

0.05 were marked as statistically significant. Results will report the
relevant findings.

3 Results

3.1 Perceived workload

The perceived workload (cognitive demand, physical demand,
temporal demand, effort, frustration) and perceived performance
are shown in Figure 5, a full report on the outcomes of the statistical
tests is available as Supplementary Material.

Increased human autonomy (HL vs. FRL) led to a significant
decrease in all perceived workload factors (cognitive demand
p < 0.001, physical demand p = 0.011, temporal demand, p
= 0.007, effort p = 0.03, frustration p = 0.032). Decreased
robot work pace (SRL vs. FRL) led to a significant decrease
in cognitive demand (p = 0.026) and temporal demand (p =
0.008). The same trend was observed in the other perceived
workload factors, physical demand, effort, and frustration, but
without significant differences. The difference in perceived
performance between all collaboration conditions was small and not
significant.

3.2 Objective performance

The tile cycle time, the time between two tiles placed by the
human is shown in Figure 6.

Increased human autonomy (HL vs. FRL) led to a
9.2% decrease in tile cycle time (6.8 s vs. 7.5 s). Decreased
robot work pace (SRL vs. FRL) led to an 12.5% increase
in tile cycle time (8.5 s vs. 7.5 s). These differences were
significant.

4 Discussion

4.1 Experimental validity and limitations

The experiment aimed to keep performance constant across
conditions by fixing the board cycle time. Despite this, small
(<15%) but significant differences in the tile cycle times were
observed, which affected the waiting time between boards.
However, these differences in tile cycle time did not lead
to significant differences in perceived performance among
participants. Furthermore, the increase in perceived workload
was not directly associated with an increase in tile cycle time, as
observed in the HL vs. FRL comparison but not in the SRL vs.
FRL comparison. The tile cycle time is therefore not considered
as a primary indicator for perceived workload. Still, the tile cycle
time differences will be considered when interpreting the other
results.

After the experiment the participants were asked if they were
able to systematically improve their task execution with something
they discovered in the experiment. First, they were asked after
the experiment whether they recognized the predefined placement
patterns of the robot, which was not the case. Secondly, participants
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FIGURE 5
Perceived workload in the three collaboration conditions: Human in the lead (HL), Slow-paced robot in the lead (SRL) and Fast-paced robot in the lead
(FRL).

FIGURE 6
Average tile cycle times.

were asked whether they discovered strategies that let them work
more efficient, e.g., counting strategies for the cognitive tasks.
Participants reported a wide range of strategies. However, they did
not experience one strategy to be much more efficient that other

strategies. Therefore, it is unlikely that placement patterns of the
robot or the development of task strategies led to instantaneous
changes in performance and influenced the outcomes of the
experiment.

There are limitations to consider in this study. Firstly, our
experiment focused solely on a single task resembling an industrial
assembly task. The perceived workload, measured using the TLX,
served as a proxy for job quality, but this relationship is non-linear.
Extreme workload levels, either too low or too high, can lead to
performance decline, following a U-model (Young and Stanton,
2002). Therefore, the findings should be interpreted within the
context of industrial assembly work and may not be generalizable
to other tasks, such as monitoring or high-load tasks. Also, factors
of the TLX tend to correlate (Hart, 2006). This study reports
the outcomes on all six factors. Due to the correlation between
factors, it is difficult to isolate the effects on different types of
perceived demands which might also be reflected in the results.
For example, the perceived physical demand changed along with
the other factors even though the real physical demand did not
change.

Another limitation is that a fixed delay was chosen between
human tasks, ensuring all participants experienced the samewaiting
time. This delay was effectively zero in FRL and HL conditions and
small in the SRL condition. Consequently, participants were unable
to adjust the waiting time by working at a faster or slower pace. In
situations where the waiting time between tasks is dependent on the
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working speed of the human, the relation between working pace and
perceived workload may differ.

Furthermore, the experiment involved modifying human
autonomy by allowing participants to initiate tasks and select
the execution order, which slightly altered their task load. The
primary components of task load were manual handling and
cognitive counting. However, minor variations in task load existed
across the conditions. These limitations emphasize the need for
caution when extrapolating the results, particularly to other types of
work.

4.2 Human autonomy (HL vs. FRL)

The study results indicate that, in the assembly task, increased
human autonomy reduces perceived workload. The increase in
human autonomy (HL vs. FRL) was achieved by letting the human
start the tile placement sequence and letting the human select the
order in which the tiles were placed instead of the robot. This
relatively small change in human autonomy was sufficient to lead
to a significant decrease in the selected five perceived workload
factors. This is in line with the findings of Pollak et al. (2020)
that promotes manual control over the robot. This finding is also
in line with the Karasek's job-demand-control model (Karasek,
1979; De Spiegelaere et al., 2015). According to the model, when the
operator has the job control (i.e., autonomy to initiate a new cycle)
to tackle a matching job demand (i.e., work pace) the perceived
workload will be lower. Thus, it should be noted that leaving a
task for the operator to perform does not automatically increase
perceived workload. On the contrary, take away a task which helps
the operator control the job demands, and the perceived workload
will likely increase. In contrast, the result of the present study
conflicts the findings of (Gombolay et al., 2015; Schulz, Kratzer, and
Toussaint, 2017) that promote automation. A difference between
this study and Schulz et al. (2017) and Gombolay et al. (2015) is that
these studies is that a pro-active involvement of the cobot resulted in
clear task performance advantages, such as reduced execution time
or less re-scheduling.

It was also observed that the tile cycle time in the FRL condition
was slightly higher than in HL condition. This was not caused
by increased waiting time of the human since the robot always
worked ahead of the human (Figure 3). The change in autonomy
also entailed a change in dependency between the robot and the
human tasks. In the HL condition there was no direct dependency
of the human tasks on the robot tasks, i.e., the human could work
without noticing the result of the robot's task. In the FRL condition,
the human did have to watch the outcome of the robotic tasks, i.e.,
observe the color and the location of the tile placed by the robot.
The dependency on robot tasks in the FRL condition might have
caused that the participant felt an increased need to actively follow
the robot's actions. It could have also been caused by the fact that
since the robot took the initiative, it was perceived as less predictable.
The predictability of robot motions has been positively associated
with trust and perceived safety (Dragan et al., 2015). Both factors
might have led to an increase in attention to the robot's actionswhich
might have caused the increased cognitive and temporal demand in
the FRL condition.

4.3 Robot work pace (SRL vs. FRL)

This study indicates that decreased robot working pace reduces
workload. In the SRL condition, participants experienced a fixed
delay between their tasks. They had to wait with picking a new tile
until the robot selected a tile color by picking a new tile from the
supply. This contributed to the observed increase in the tile cycle
time. In the FRL condition the new tile from the robot was already
on the table since the robot worked one step ahead. This change led
only to a significant change in two factors, cognitive and temporal
demand, and is thus less prominent as the human autonomy related
effect.

The finding that workload indicators are lower in the SRL
condition competes with the findings of Hoffman (2019) who found
positive associations between objective fluency (i.e., minimizing
delays) and factors such as trust and bonding which favor the FRL
condition. However, if reducing workload is the goal, it can be
achieved by decreasing the robot pace, which aligns with the SRL
condition. Other studies (Arai, Kato, and Fujita, 2010; Fujita, Kato,
and Tamio, 2010) have shown that faster moving robots increase
mental strain. Itmust be noted that in their studies themoving speed
of the robot was increased. This study changed pace, i.e., the timing
of the onset of robot actions, alone and the robot moving speed
was constant. Changing the moving speed of the robot might have a
separate effect on perceived workload.

5 Conclusion

The study demonstrates that human-robot collaboration
(HRC) in industrial settings creates interdependence between
humans and robots, which can impact job quality. Based on
The OECD Job Quality Framework and Karasek's job-demand-
control model (1979), human autonomy and robot work pace were
selected as key factors that might affect the perceived workload.
The experiment manipulated these two factors across three
conditions.

Increasing human autonomy by assigning decision-making
tasks to humans resulted in a decrease in perceived workload, even
for small decision-making tasks typical in industrial assembly. This
finding aligns with the notion that higher levels of human autonomy
which match corresponding job demands contribute to improved
job quality.

Lowering the work pace of the robot, such that it creates small
waiting times between tasks for the human, led to a reduction
in perceived workload. This finding supports previous research
suggesting that a high working speed of the robot can increase
mental strain. Interestingly, this finding contradicts the fluency
principle, which emphasizes minimizing waiting times for both
humans and robots.

These findings have practical implications for various industrial
HRC processes that involve a sequence of human and robot tasks.
The level of human autonomy can be adjusted by determining task
initiation and execution order responsibilities between humans and
robots. Similarly, the robot's pacing can be modified by altering the
timing of its actions. Importantly, these changes can be implemented
independently of the primary task distribution between humans and
robots, without significant consequences for productivity. Based on
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the study's results, two design guidelines are proposed to optimize
HRC applications:

• Encourage a design that allows operators some freedom to
initiate tasks and choose the execution order.

• Thework pace of a robot can be optimized by balancing fluency,
cognitive demands, and temporal demands (time pressure).
Lowering the robot pace can be an effective strategy to reduce
cognitive and temporal demands.

By following these design guidelines, industrial HRC processes
can be optimized to enhance working conditions, improve job
quality, and mitigate workload-related challenges.
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